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PLASTIC TORSION OF A RECTANGULAR BAR WITH
JUMP NON-HOMOGENEITY

J. RYCHLEWSKI

Institute of Fundamental Technical Problems, Warsaw, Poland

Abstract—The problems of plastic jump non-homogeneity, i.e. the problems concerned with a jump-like
change of the yield limit, were considered in previous papers by the author. In the present work, a rectangular
bar composed of two materials with different yield limits and subjected to torsion is considered. It turns out
that even for such a simple problem nine different solutions exist depending on the values of three parameters
characterizing non-homogeneity, form, and partition of the cross-section.

THE problem of purely plastic torsion of homogeneous bars has been well explored
(cf. for instance, [1]). Reference [2] contains an analysis of torsion of non-homogeneous
bars with continuous distribution of the yield limit. :

In applications we have often to do with bars composed of several different materials.
The problem of limit load of such bars reduces to the necessity of considering the case
where the yield limit undergoes a jump change on certain lines. Such a non-homogeneity
has been called in [3] a jump non-homogeneity.

Reference [4] contains a general analysis of the problem of plastic torsion for a
jump non-homogeneity, the properties of the stress field in the neighbourhood of a
contact line, an analysis of the form of solution in the neighbourhood of the intersection
of the contact line and the edge (local solution), a discussion of Nadai's analogies and
a solution example for a circular bar. Homogeneous bars of multiply connected cross-
section constitute a particular case of the class of bar studied in [4].

Let us consider here the bar with cross-section as shown in Fig. 1. The rectangle
2ax 2b is divided by the contact line L normal to the edge 2b into two regions G_, G .,
whose widths are ¢ and 2b—c, respectively. The materials in the regions G_, G, have
constant but different yield limits K_, K,, K, > K_. The strength of the joint is
characterized by a third number K, equal to the maximum shear stress that can be
transferred across the contact surface.

It will be assumed that the adhesion is perfect, that is

Ko, > K_, (1)

which excludes the quantity K, from further considerations (cf. {3, 4]).
The problem is characterized by three independent parameters, for instance

<w, 0<-<2 2)

S



244 J. RYCHLEWSK!

A
G_ G,
8 L
K_ K,
- 2b -
Fic. 1.

They may be called parameters of non-homogeneity, form and partition, respectively.
The components of the vector of shear stress

- - -
T =Tl 41,0, )
must satisfy the equilibrium equation
sz,x+1yz,y = O, ‘ (4)
the yield condition
ﬂz . {KZ_ inG_, (
o =1+, = 5)
¥ (K inG,,

and the boundary condition 1,, = 0 at the contour.
The continuity condition of the normal component
Toen=7_n (6)
must be satisfied on the contact line L, where 7 is the unit vector normal to L. On the
contact line we have therefore a discontinuity of stress. The vector of shear stress under-
goes a rotation.
On introducing the stress function by means of the classical equations

Te.=F, t1.=—F, (7
we satisfy (4) identically. From the condition (5) we have
K._ inG_,

Jerad F[ = {K+ in G,. ®)

The problem of finding the stresses satisfying (4), (5) is therefore equivalent to the con-
struction of a continuous surface F{x, y} with constant slope, different in G_ and G,.
It should be stressed that neither of the two problems has a unique solution. From the
set of solutions we must select that which is in agreement with the kinematic conditions.
If these are not considered the correct solution is, according to the extremum theorems
of plasticity, that corresponding to the highest value of the limiting twisting moment,

M=2 || Fdxdy. ©)

G_3G+
Let us proceed to obtain the Jocal solution in the neighbourhood of point A, the set
of coordinates assumed being that of Fig. 2.



Plastic torsion of a rectangular bar with jump non-homogeneity 245

X M

Fic. 2.

In the neighbourhood of the edge AN of the weaker material (region I) the solution
of the equation (4), (5) has the form

,=K_, ., =0 (10)

The continuity condition (6) must be satisfied at the contact line L, that is 1 = 1.

Therefore the solution in the stronger material has in the neighbourhood of L (region II),
the form

T, =Kicosx, 1l = K,sinx (11)

The vector 7" (whose modulus is K . ) is rotated in relation to 7' (whose modulus is
K _) through the angle
K_ 0<y< s
% = arc cos —, <z <o
K, 2
In the neighbourhood of the edge of the stronger material (region III) the solution has
the form
=K, dr=0 (12)
Starting from the intersection point of the contact line L with the edge of the cross-
section a discontinuity line | penetrates into the stronger region. Its form can be obtained

from the condition - 7 = . . We have

[: y= —cotx/2-x.

Figure 2 shows the slip lines which are orthogonal at every point to T and a trajectory
of the vector 7. The surface F(x, y) is composed, in the neighbourhood of A, of three
plane sheets.

Depending on the properties of the parameters 4, a/b, ¢/b, the problemn of limit load
of the bar has nine different solutions.
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Solution 1, Figure 3*

From the corner N a discontinuity line /, propagates thus dividing the weaker zone
into the regions I, I in which the slip-lines are normal to NA and NS, respectively.
In view of the maximum condition of the limit moment it is assumed that there are no
other discontinuity lines in the weaker region and that /; intersects the contact line at
a point A,,. In the neighbourhood of 4 the image is that of Fig. 2. The discontinuity
line /, is inclined to L at an angle »/2. In region III the slip lines are parallel and inclined
at an angle « to L. On the sector AoB of the line L the vector 7~ is parallel to L, there-
fore 7+ is also parallel (cf. Fig. 3) therefore the slip lines in the region IV are normal
to A,,B. A discontinuity line [, passes through A4,,, bisecting the angle between the slip
lines of the regions III and 1V. The slip lines /,, [; have an intersection point A4,5. Since
in the region V the slip lines are normal to the edge AM and in the region 1V they are
normal to A4,,B, a discontinuity line /, therefore passes through A,; at an angle n/4
to these lines. It intersects the symmetry axis at A,,. The discontinuity lines I, /4 require
no comment,

a) b)
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A 4 M N A |
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b L 3 * 4 L |
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2 VI < -+t Ny
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| 3
G I A 22 723
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4\2=?C (1+5in 2 + cos ae)

Fic. 3.

The characteristic dimensions and angles can easily be determined on the basis of
this analysis. They are given in Fig. 3(b).

The stress surface F is composed of plane sheetsT different in each region. The dis-
continuity lines [;(i = 1,... 6) are segments of projections of straight lines constituting
the intersections of the sheets of F. Sufficient information on the surface F is furnished
by the ordinates of the points A, Az3, Aas,

Fio = K ccosn, Fy3 = 3K c(1 +sin = +cos »), F,,=K.a, (13)

and the F = const. lines (Fig. 3(b)), that is the trajectories of shear stress. The function
F reaches its maximum constant value on the discontinuity line /5. The limit moment
can be found from (9).

* All the figures are drawn for 1 = K_/K, =05, » = 60°.

t In the problem considered we shall be concerned only with regions of parallel slip lines (plane sheets
of F); therefore this will no longer be mentioned.
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If ¢ is small in relation to a, b, the set of discontinuity lines [, [,, I; is comprised in
a small neighbourhood of the corner N and disturbs in an insignificant manner the well-
known solution for the homogeneous body.

The solution obtained is valid if the point 4,5 lies above the symmetry axis and the
point A, is to the left of the point 4.,. By finding the appropriate distance in Fig. 3(b)
we obtain the inequalities*

a 1 c
=0, ——=(1+sinx %)~ 2 0,
012 p 2( +s1n/+COS/)b
(14)
5020, 1-2—titcosniso
16 = Y b 2 /.b/ .

On a 4 = const. plane in the C;-space of the parameters (2) this corresponds to the
region 1 between the axis a/b and the straight lines A,,, A, Fig. 12, intersecting at the
point A, of which the coordinates are

a l+sinx+cosx c 2

Ay - - . =
! b 2 +4sinx b 24sinx

(15)

Solution 2, Figure 4

With the increasing parameter ¢/b, for fixed a/b and A, the conditions (14) may no
longer be satisfied. Let us consider first the case where the condition &,, > 0 is not
satisfied. Then, the slip lines I,, I; will cross the symmetry axis at the points A, A;;
before they meet at 4,;. We obtain a modification of the previous solution, Fig. 4(a).
Instead of the discontinuity line I, we have a new discontinuity line /. The characteristic
distances and angles are shown in Fig. 4(b). The ordinates of the stress surface F are+

COS #
F3 =K

S

—————(a—csin %), Fig < F3, < Fy,. 16
R ) Fio < Fy, <F, (16)

Solution 2 takes place if the distance between the points A,,, A, is greater than zero,
the point A, lies above the symmetry axis and the distance between the points 45, A,
is greater than zero. By calculating, on the basis of Fig. 4, the quantities required, we

4g) b
a7sinae
+
N A M e
T ; £ \
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[1I 12 [6 i
I il v . Xt
S ": - [3 /7 { s // [2 Vv
- ]
1/ | 1| —
! /
(| fo o . WA
2l ‘//17
N A M Ass 2s
_p)-Los €
FIG. 4. @ Clisina

* The quantities d,, are selected so that a change of sign of 6,, corresponds to a passage from the vh to
the uth solution. In general 8,, # §,,.

+ We shall quote a few values only. The values of F,; are the same for all the solutions in which the point
Ay is involved.
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obtain the following inequalities

= 0, (17)

1+cosx b b

In a 4 = const. plane this corresponds to the region 2 between the straight lines
Ayas Ags, Ayg, Fig, 12, The straight lines A, ,, A,q intersect, as is easily seen, at points
A, coordinates are (15).

Solution 3, Figure 5

If, in the preceding solution, the width of the weaker zone has the value ¢ = a, the
point 4, lies on the symmetry axis S—S. The zone IV vanishes. For greater values of ¢
the solution is shown in Fig. 5(a), (b). This is the simple solution. From Fig. 5(a) it follows
directly that for sufficiently small values of the parameter a/b this solution is valid for
any 4 and in a broad range of values of ¢/b.

a)
N A M
A [ v oy
1\ m\ 7

sk o NGl &N/ s
o
L

N A M

Fig. 5.

The validity region of Solution 3 is expressed by the inequalities

532 ,->/ 0’ < 09

o

4
b

l4+sing+cosza ¢
83420, 2" —— 220 18
342 0 1+cosx b b (18)

The corresponding straight lines A,;, A;, in a A = const. plane have an intersection
point A, whose coordinates are

: 1 7
[¢ _ .+COS/ . (19)
b 1 +sin % +cos »

Ay

¢
b
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Solution 4, Figure 6

With increasing parameter ¢/b the discontinuity lines /,, /¢ may intersect at the point
A, above the symmetry axis. The point A, is the origin of new discontinuity line /,,
halving the angle between the slip lines of regions III and VI.
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FiG. 6.

The values of the stress function F at the characteristic points are

acos v+ (2b—c)sin »
1 +sin

Fi,=Fg = K,acosx, Fys = K,

El

(20)
1+cosu

F,. =K, 2b—¢)——"""".
26 + c)1+sin~/.+cosz

The greatest value of the function F (the top of the surface F) is F,,. The validity range
of the solution is expressed by the inequalities

l+sinx+cosxa c

c

5 2 ] L < ]

520 T <0 1)
¢

045 2 0, < —B> ——cosx = 0,

to which correspond the straight lines As4, Ayg, Ags, Fig. 12.

Solution 5, Figure 7

Further increase of the width of the weaker zone leads to the case where the dis-
continuity line /, intersects the contact line at a point A, above the symmetry axis. From
the point Ay, originates a new discontinuity line I, in the weaker zone bounding a new
region VII in which the slip lines are normal to the contact line L.

The values of the function F at the characteristic points are

Fy,o = K, (2b—c), F.,, = Kiacosx. (22)
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The maximum constant value is reached by the function F on the discontinuity line /.
The validity range of Solution 5 is determined by the inequalities

c\ a
5 ? o — -7 A < y
sqa = 0 ( b) bCOS/ 0

c a c
5 > > e 2"__‘ v > N
s9 = 0 ( b) ( b b) cosx = 0

The corresponding lines A,s, Aso in Fig. 12 intersect at the point A whose coordinates

(23)

are
a ¢ 2
Ay: == 24
3 b b 1+cosu @4
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With increasing parameter ¢/b the inequality (23} still holding, the discontinuity
lines /,, kg, Iy and the corresponding zones III, V become localized in a decreasing neigh-
bourhood of the corner M. For ¢ = 2b we obtain the solution for a homogeneous bar
made of the weaker material.

Solution 8, Figure 8

Analysis of the Solutions 2,4 leads to the conclusion that there exists a narrow range
of parameters, for which the discontinuity line /; crosses the symmetry axis and, at the
same time, the discontinuity lines /,, I cross themselves above the symmetry axis. The
solution is shown in Fig. 8. The stress function takes at the characteristic points the
previous values. The summit of F lies above Aq,. The validity range of Solution 8 is
expressed by the inequalities

¢\ cosx a c
dg7 = 0, 2—— 24— i = 0.
87 ( b>1+smx 2b+b(1+sm %)= 0

The corresponding region in Fig. 12 is bounded by the segments A,g, Asq, Ags, con-
stituting a triangle with its corners at A, A,, A;.
Solutions 6, 7, 9, Figures 9, 10, 11

It can be easily observed that the above solutions have been obtained by assuming
that the ratio a/b is sufficiently small. For greater a/b we easily obtain, from the Solutions
1, 8, 5, the Solutions 6, 7, 9 shown on the respective Figs. 9, 10, 11. The characteristic

l
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angles and dimensions and the form of the trajectories of shear stress can easily be fixed
on the basis of the previous figures. The values of the stress functions at the new points
A4e (Solution 6), 443 (Solution 7), 4, ;, (Solution 9) are the maximum values of the

corresponding solutions,

¢
Fu6 = Fyy =F1'10=K+[b—§(1—cosy.)}. (26)
The validity ranges are described by the following inequalities
¢ 2
5 2 0, T . s
67 b~ 2+sinx
(27)
1 8
S61 2 0, 1—%—5(1+cos ")(B <0,
for Solution 6
3,6 20, © 2
767 b~ 2+sinx
¢\ cosw a ¢
=0, — =2+ (1 +sinx) < 0, 28
0.5 20 (2 b)l—i—smz b+b( +sin %) (28)
¢ 2
= . ]
070 2 0, b~ 1+4cosx
for Solution 7 and
¢ 2
b9, 2 0, T
997 2 0 b~ 14cos=
¢ a ¢
; B Y Pl <. 29
dgs = 0, (2 b) <2b b> cosx <0 (29)

for Solution 9.
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This ends the analysis of the example. The limit twisting moment for each particular
solution is determined from equation (9) and the ordinates of the surface F, which requires
elementary but tedious computation.

We should stress the special role of the solutions corresponding to the points A,
A, A; in a 1 = const. plane whose coordinates are determined by (15), (19), (24). They
have two interesting properties:

(1) From the solutions A;, A,, A; shown in Fig. 13 all the nine solutions can be
obtained by insignificant changes of the parameters a/b, c/b.

(2) The subdivision of a 4 = const. plane into regions of applicability of each solution
is determined in a unique manner by giving the points A,(1), A;(4). By connecting the
point A, with the points {0, 0}, {1,0}, {c0, 1}, A;, {0, 2} we obtain the segments A,,, Ay,
Ag+, Aqg, Ayg and the location of the point A,

The influence of the value 4 on the configuration of the zones 1,...9 in a 1 = const.
plane reduces therefore to a displacement of the points A,, A;. f A = K _/K, increases
from O to 1 the point A; moves on the curve, whose parametric equations are (15) (dashed
curve in Fig. 12) from the position {3,%} to {1, 1}, and the point A; moves along the
straight line a = ¢ from {2,2} to {1, 1}.
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The latter circumstance simplifies considerably the use of the results obtained in
practical problems. Knowing the ratio of the yield limits of the materials we obtain the
location of the points A;, A, draw the straight lines A, ,, determine for given values of the
parameters a/b, ¢/b the number of the solution and compute from F the limit moment.

Let us observe that the occurrence of the simplest solutions, of the type A, A,, Ajis
generally characteristic for problems of jump non-homogeneity (cf. for instance [5]).

We can draw a number of conclusions on the classification of bars of the class just
studied. Let us indicate only that

a 2

for b < 3 we only have the solutions 1,2, 3,4, 5,
a

for 5 > 2 we only have the solutions 6, 7, 9.

The above complete solution of the problem of Fig. 1 enables us to analyse other
problems of rectangular bars with jump non-homogeneity. As an example Fig. 14 shows,
on the basis of the Solution 5, the form of the discontinuity lines for a bar reinforced by
two symmetric inserts whose width is ¢ < a.

The solution for a bar divided into n parts by rectangles, whose bisector lines of the
apex angles coincide, Fig. 15, is trivial. The limit moment is

4
M =3 ¥ KlaiGb,~a)-al_,(3b,.1~a, 1)} (30)
v=1
4 [
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FiG. 14, Fic. 15.
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Plastic jump non-homogeneity leads to essential changes in the configuration of the
slip lines and even simplest problems like that discussed above undergo surprising
complications. The same can be said of the problem of plane plastic strain of bodies
with jump non-homogeneity, [5, 6].
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Zusammenfassung—Die Probleme der sprungartigen, plastischen Nichthomogenitit, d.h. die Probleme, die
im Zusammenhang mit einer sprungartigen Anderung der Fliessgrenze auftreten, wurden vom Verfasser in
vorhergehenden Beitrigen behandelt. In der vorliegenden Arbeit wird eine rechteckige Stange untersucht,
welche aus zwei Stoffen mit verschiedenen Fliessgrenzen besteht, und welche unter Torsion steht. Es stellt
sich heraus, dass selbst im Falle eines derartigen einfachen Problems neun verschiedene Lésungen bestehen.
Diese hingen von den Werten der dret die Nichthomogenitdt kennzeichnenden Parameter, von der Form
und von der Querschnittsteilung ab.

AGcTpakT—BOnpocsl NacTHYeCKO pPa3pbIBHOM HEOAHOPOMHOCTH, T.€. BOMPOCHl MIACTHYHOCTH TEJ C
pa3phIBHBIM pacOpeneneHHeM Ipedesa TeKyYeCTH, PacCMATPHBANIHCh B MpedslAyliMx paborax asropa.
B Hacrtosilei paboTe HccnenyeTcs MPEAEabHOE COCTOAHUE CKPYYHBAEMOTO CTEPHHA COCTOALLErO M3 ABYX
MAaTEepHaiOB ¢ Pa3nM4YHBIMM MpefeNaMH TekydecT. MccrienoBaHue MOKa3ajlo, 4YTO Oakxe 3TOT NPOCTOH
NpUMep MMeET NEeBATh PA3HBIX PELUCHHI IUIA PAa3HBIX 06NacTeil 3HaAYEHHI TPEX TapAMETPOB OIMHCHIBAIOILIAX
HEOAHOPOAHOCTh, COOTHOILEHUE Pa3MEPOB CEYECHHS M ero JeJIeHHE,



